If it's not what You are looking for type in the equation solver your own equation and let us solve it.
18p^2=24
We move all terms to the left:
18p^2-(24)=0
a = 18; b = 0; c = -24;
Δ = b2-4ac
Δ = 02-4·18·(-24)
Δ = 1728
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1728}=\sqrt{576*3}=\sqrt{576}*\sqrt{3}=24\sqrt{3}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-24\sqrt{3}}{2*18}=\frac{0-24\sqrt{3}}{36} =-\frac{24\sqrt{3}}{36} =-\frac{2\sqrt{3}}{3} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+24\sqrt{3}}{2*18}=\frac{0+24\sqrt{3}}{36} =\frac{24\sqrt{3}}{36} =\frac{2\sqrt{3}}{3} $
| 16=8-1/3x | | 36p^2=24 | | k/7+3=-3 | | 4x=x=1 | | 1/3(12f-3)=`4f-1 | | 10x+35x=1001.29 | | 6(x+1)+8=16+4x | | -6x=18=7(4x+9) | | f(0)=2|0-1| | | 4k+3=14 | | 6x+6+6x=14x+6+14x | | 6-3c=12 | | -7-10d=1-14d | | 4x+2.75=23.75 | | x2+15=0 | | 4(n+8)=40 | | 7(b+1)=1(10)b= | | 8(d-1)=40 | | 7(b+1)=1(10)b=7(b+1)=1(10)b= | | 8-5n=3n-4+4n | | 21=24+7k | | -23=1-2m-6m | | 0.6(3x-5)+3.9x=14.5 | | -4(1/4x-1)=5 | | -5=-9-x/7 | | x+7÷5=4 | | 3=5n-5-3n | | -1/2=-5/6a/4 | | 5y=3=18 | | -3x(x-8)=24 | | y/4=17 | | x+x=148 |